Low-pressure reperfusion alters mitochondrial permeability transition.

نویسندگان

  • J C Bopassa
  • P Michel
  • O Gateau-Roesch
  • M Ovize
  • R Ferrera
چکیده

We hypothesized that low-pressure reperfusion may limit myocardial necrosis and attenuate postischemic contractile dysfunction by inhibiting mitochondrial permeability transition pore (mPTP) opening. Male Wistar rat hearts (n = 36) were perfused according to the Langendorff technique, exposed to 40 min of ischemia, and assigned to one of the following groups: 1) reperfusion with normal pressure (NP = 100 cmH(2)O) or 2) reperfusion with low pressure (LP = 70 cmH(2)O). Creatine kinase release and tetraphenyltetrazolium chloride staining were used to evaluate infarct size. Modifications of cardiac function were assessed by changes in coronary flow, heart rate (HR), left ventricular developed pressure (LVDP), the first derivate of the pressure curve (dP/dt), and the rate-pressure product (RPP = LVDP x HR). Mitochondria were isolated from the reperfused myocardium, and the Ca(2+)-induced mPTP opening was measured using a potentiometric approach. Lipid peroxidation was assessed by measuring malondialdehyde production. Infarct size was significantly reduced in the LP group, averaging 17 +/- 3 vs. 33 +/- 3% of the left ventricular weight in NP hearts. At the end of reperfusion, functional recovery was significantly improved in LP hearts, with RPP averaging 10,392 +/- 876 vs. 3,969 +/- 534 mmHg/min in NP hearts (P < 0.001). The Ca(2+) load required to induce mPTP opening averaged 232 +/- 10 and 128 +/- 16 microM in LP and NP hearts, respectively (P < 0.001). Myocardial malondialdehyde was significantly lower in LP than in NP hearts (P < 0.05). These results suggest that the protection afforded by low-pressure reperfusion involves an inhibition of the opening of the mPTP, possibly via reduction of reactive oxygen species production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled reperfusion after hypothermic heart preservation inhibits mitochondrial permeability transition-pore opening and enhances functional recovery.

We investigated whether low-pressure reperfusion may attenuate postischemic contractile dysfunction, limits necrosis and apoptosis after a prolonged hypothermic ischemia, and inhibits mitochondrial permeability transition-pore (MPTP) opening. Isolated rats hearts (n = 72) were exposed to 8 h of cold ischemia and assigned to the following groups: 1) reperfusion with low pressure (LP = 70 cmH(2)O...

متن کامل

PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning.

OBJECTIVE We investigated whether phosphatidylinositol 3-kinase (PI3K) might regulate mitochondrial permeability transition pore (mPTP) opening in hearts reperfused with either low pressure or postconditioning. METHODS Male Wistar rat hearts (n=72) were perfused according to the Langendorff technique, exposed to 30 min of ischemia, and assigned to one of the following groups: (1) reperfusion ...

متن کامل

Evaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion

Objective (s) Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT) pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury. Mater...

متن کامل

Mitochondrial permeability transition pore and postconditioning.

Postconditioning has recently been described as a powerful cardioprotection that prevents lethal reperfusion injury. Growing evidence suggests that mitochondrial permeability transition may be a key event in postconditioning. This proposition arises from the complementary observations that: (1) conditions for the mitochondrial permeability transition pore (mPTP) opening are built up during earl...

متن کامل

Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition.

OBJECTIVE Diminishing oxidative stress may protect the heart against ischaemia-reperfusion injury by preventing opening of the mitochondrial permeability transition (MPT) pore. The general anaesthetic agent propofol, a free radical scavenger, has been investigated for its effect on the MPT and its cardioprotective action following global and cardioplegic ischaemic arrest. METHOD Isolated perf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 288 6  شماره 

صفحات  -

تاریخ انتشار 2005